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ABSTRACT 

Clustering is the process of putting observations into groups based on their distance, or 

dissimilarity, from one another. Measuring distance for continuous variables often 

requires scaling or monotonic transformation. Determining dissimilarity when 

observations have both continuous and categorical measurements can be difficult because 

each type of measurement must be approached differently.  

We introduce a new clustering method that uses one of three new distance 

metrics. In a dataset with p variables, we create p trees, one with each variable as the 

response. Distance is measured by determining on which leaf an observation falls in each 

tree. Two observations are similar if they tend to fall on the same leaf and dissimilar if 

they are usually on different leaves.  

The distance metrics are not affected by scaling or transformations of the 

variables and easily determine distances in datasets with both continuous and categorical 

variables. This method is tested on several well-known datasets, both with and without 

added noise variables, and performs very well in the presence of noise due in part to 

automatic variable selection. The new distance metrics outperform several existing 

clustering methods in a large number of scenarios. 
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EXECUTIVE SUMMARY 

Clustering is the process of grouping observations with other observations which share 

similar characteristics (Hartigan, 1975, p. 1). Observations in a cluster should be similar 

to one another and different from observations in other clusters (Mirkin, 2005, pp. ix–x). 

A way to measure dissimilarity between observations is by measuring their distance from 

one another. Current clustering algorithms usually use the Euclidean or Manhattan 

distances as a measurement of dissimilarity (Kaufman & Rousseeuw, 1990, p. 11–12). 

There are several problems with the current distance metrics used for clustering. 

Continuous variables often require scaling or monotonic transformation (Kaufmann & 

Rousseeuw, 1990, p. 4). Categorical variables have to undergo their own transformation 

into a useable form from which distances can be calculated. Clustering datasets with 

mixed data, both continuous and categorical variables, can be difficult because each 

measurement must be treated differently (Mirkin, 2005, pp. 65–66). We introduce a new 

clustering method that easily clusters mixed data, is not affected by scaling or 

transformation, and performs automatic variable selection, allowing it to perform well in 

the presence of noise. 

Our clustering method uses one of three new distance metrics, d1, d2, and d3, 

calculated by using classification and regression trees. In a dataset with n observations and p 

variables, we build p trees, one with each variable in the dataset as the response. Distance 

between observations is measured by determining in which leaves observations fall with 

respect to one another. Two observations are similar if they are in the same leaf and are 

different if they are in different leaves. After our method calculates all of the distances 

between observations, we run the agglomerative nesting (AGNES) clustering algorithm on 

the distances to determine the clusters (Kaufman & Rousseeuw, 1990, p. 199).  

We tested our new method on three well-known datasets from the University of 

California at Irvine Machine Repository. The true number of classes for each dataset is 

already known, allowing us to test our method’s predictive ability (Bache & Lichman, 

2014). We added 15 and 50 variables of random noise to each dataset to see how well our 



 xvi 

method performs in the presence of noise. Although we know the number of classes for 

each dataset, more clusters might actually occur in nature; therefore, we clustered a 

dataset with k classes using k and 2k clusters.  

To test how well our new method is able to accurately cluster data, we compared 

all three distance metrics to four other clustering algorithms: Partitioning around medoids 

(PAM), divisive analysis (DIANA), AGNES (Kaufmann & Rousseeuw, 1990), and the 

K-means partitioning algorithm (Hartigan, 1975). We then calculated Cramér’s V to 

evaluate the quality of each clustering solution.  

At least one of the new distance metrics performed better than the other four 

algorithms in over 77 percent of the 18 cases. AGNES performed equally as well on the 

Iris dataset with no noise and three clusters. The K-means algorithm performed better 

than the new distance metrics on the Optical dataset in every case when using 20 clusters. 

In cases when one of the new distance metrics outperformed the other algorithms, d2 did 

the best 66 percent of the time.  

Our method performs very well in the presence of noise compared to the other 

clustering algorithms. The use of classification and regression trees on all p variables 

removes any need to scale or transform any of the data and allowed automatic variable 

selection. 
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I. INTRODUCTION 

A. THESIS PURPOSE 

This thesis is a continuation of work originally presented in Buttrey (2006) titled 

“A Scale-Independent Clustering Method with Automatic Variable Selection Based on 

Trees.” The purpose of this thesis is to provide three new distance metrics to be used in 

clustering algorithms that are not influenced by linear transformations, and can be used 

on datasets with both categorical and continuous variables. Using classification and 

regressions trees to obtain the distances, our method also allows for automatic variable 

selection and resistance to noise variables. The data used in this thesis come from 

University of California at Irvine Machine Learning Repository (Bache & Lichman, 

2014). 

B. THESIS OBJECTIVES 

 Implement an algorithm that calculates three new distance metrics by 

building classification or regression trees on every variable in the 

respective datasets. 

 Choose an existing clustering algorithm based on the three distance 

metrics, and use Cramér’s V to evaluate the quality of the clustering 

solution.  

 Compare the results to other clustering algorithms to evaluate the accuracy 

of clustering using the new distance metrics. 

C. USES OF CLUSTERING 

Clustering analysis is the study of determining appropriate groups, or clusters, for 

a given dataset (Hartigan, 1975, p. 1). Once a distance, or dissimilarity, metric has been 

established to evaluate the extent of the difference between two observations, clusters of 

observations are formed. Ideally, observations in a cluster should be very similar to one 

another and very different from observations in other clusters (Mirkin, 2005, pp. ix–x).  

Clustering has been used in various fields including natural science, psychology, 

and more recently, economics. People have been trying to group different species since 

Aristotle’s time, and taxonomy was finally standardized by Carolus Linnaeus in the 18th 
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century, when he developed the modern system of biological classification (Hartigan, 

1975, pp. 1–2). Clustering has also been used in military analysis. Bird and Fairweather 

(2007) used clustering of casualties of Coalition Forces in Iraq and Afghanistan as a 

means of predicting future casualties in Afghanistan. Jones et al. (2002) looked at 

medical records of almost 2,000 British veterans to gather demographic data such as 

documented medical symptoms and wars in which the veterans fought. They then 

clustered the data and were able to identify three distinct post-combat syndromes 

associated with different eras, granting some legitimacy to proposed medical conditions 

such as the Gulf War Syndrome (Jones et al., 2002, pp. 321–324) 

D. MEASURING DISTANCES BETWEEN OBSERVATIONS 

Kaufman and Rousseeuw describe a standard clustering scenario using a dataset 

that contains n observations, each with p measurements. The measurements can be either 

continuous or categorical. The ith observation of the kth measurement is denoted by xik 

where i=1, 2,…, n and k =1, 2, …, p. The distance between any two observations i and j 

for a given measurement k is denoted by dk(i,j). This distance is used to quantify the 

dissimilarity between the two observations (Kaufman and Rousseeuw, 1990, pp. 3–4). 

1. Euclidean Distance 

The most common method to measure dissimilarity between two observations is 

to calculate the Euclidean distance (Equation 1.1), which is the true geometric distance 

between observations (Kaufman and Rousseeuw, 1990, p. 11).  

 
2 2 2

1 1 2 2( , ) ( ) ( ) ... ( )i j i j ip jpd i j x x x x x x         (1.1) 

The Euclidean distance can be represented by a straight line between the two 

observations, as illustrated for the two dimensional case in Figure 1 (Hartigan, 1975, 

p. 58). 
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Figure 1.  Euclidean distance of two observations (from Kaufmann & 

Rousseeuw, 1990, p. 12). 

2. Manhattan Distance 

Another common distance measurement used in clustering is the Manhattan 

distance, calculated by adding the absolute values of distances between observations for 

each respective measurement (Equation 1.2).  

 1 1 2 2( , ) ...i j i j ip jpd i j x x x x x x         (1.2) 

The distance derives its name from the city streets of Manhattan. Each 

measurement difference between observations can be represented as a city block in 

Manhattan, as illustrated in Figure 2 (Kaufman & Rousseeuw, 1990, p. 12). 

 

Figure 2.  Manhattan distance of two observations (from Kaufman & 

Rousseeuw, 1990, p. 12). 
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3. Other Distance Metrics 

Although most clustering problems use Euclidean or Manhattan distances, many 

other distance metrics are used to calculate differences between observations in 

clustering, each used for varying circumstances. Equation 1.3 shows the Minkowski 

distance, a variation of the Euclidean and Manhattan distances, with q taking a value 

between zero and one (Kaufmann & Rousseeuw, 1990, p. 13). 

  
1

1 1 2 2( , ) ...
q q q q

i j i j ip jpd i j x x x x x x         (1.3) 

The distance metrics described above are primarily useful for continuous 

variables. If a variable is categorical, then dissimilarity is often calculated based solely on 

whether two observations have the same value for a given measurement, as shown in 

Equation 1.4 (Hartigan, 1975, p. 64). 

 
( , ) 0   if 

( , ) 1    if 

k ik jk

k ik jk

d i j x x

d i j x x

 

 
  (1.4) 

E. PROBLEMS WITH CURRENT DISTANCE METRICS 

For continuous variables, the distance between observations can be influenced by 

contributing factors such as the units used for each variable and any monotonic 

transformations made on the data (Kaufmann & Rousseeuw, 1990, p. 4). For both 

continuous and categorical variables, these distance metrics treat each variable equally, 

even though some variables might be more important to the dataset than others, and 

therefore should have a weight applied to them. Variables in the datasets could be 

correlated, resulting in that attribute contributing to overall distance more than once 

(Hartigan, 1975, pp. 60–65). Finally, measuring distance between observations when the 

data has a combination of continuous and categorical variables requires some type of 

scaling or standardization of the variables (Mirkin, 2005, pp. 65–66). 

1. Scaling Measurements 

The scale in which a variable is measured is influential when clustering the data 

(Kaufmann & Rousseeuw, 1990, p. 4). Suppose that a group of ships were clustered 
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based on physical characteristic, with just their displacement and maximum speed used as 

measurements. Using pounds instead of tons will increase the dissimilarity between ships 

by increasing the spread of the clusters. One way to avoid this problem is to standardize 

all of the variables, where each measurement is divided by some standardization value. 

To avoid the influence of outlying measurements, a standardization method such as the 

mean absolute deviation (Equation 1.5) is recommended, where mk is the mean of 

variable k (Kaufmann & Rousseeuw, 1990, p. 8). 

  1 2

1
...k k k k k pk ks x m x m x m

n
         (1.5) 

2. Weighing Variables 

One problem with standardizing variables is that it gives each variable the same 

effect, and therefore, the assumption needs to be made that each variable is equally 

important in determining clusters in the dataset. Once all of the variables are 

standardized, weights can be applied to each variable based on importance (Mirkin, 2005, 

p. 65–66). Using the previous example of the ships, additional measurements including 

freeboard and height can be used to cluster the ships. If, for example, speed and 

displacement were better indicators of ship clusters, weights could be assigned to all 

variables, with heavier weight given to speed and displacement and lighter weight given 

to freeboard and height. This would result in speed, rather than height, having a greater 

influence on the dissimilarity between two ships and ultimately the clusters in which they 

belong. The problem with incorporating weights is that their values can often be 

subjective. In many cases, a subject matter expert might have to be consulted to 

determine appropriate weights (Hartigan, 1975, p. 60). 

3. Categorical Variables 

Determining the dissimilarity between observations using categorical variables is 

approached in several different ways. First, there is the approach in Equation 1.4; two 

observations have a distance of 0 if they have the same value for a given variable and a 

distance of 1 if they have a different value for that variable (Hartigan, 1975, p. 64). 

Another approach is to convert the entries for a categorical variable into nominal or 
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binary scale. These variables will have to be rescaled due to some entries having more 

weight than others (Mirkin, 2005, p. 64). For example, if a variable k is coded into 1s and 

0s, and 0s are much more prevalent, the presence of a 1 might be more significant than 

the presence of a 0. Observations which have a 1 for k might be much more similar to 

each other than two observations which have a 0 for k. Otherwise, it must be assumed 

that the variable is symmetric and each appearance of 0 and 1 has equal weight. 

(Kaufmann & Rousseeuw, 1990, p. 26). An appropriate way to scale k is to determine the 

distribution of 1s and use the respective variance for that distribution (Mirkin, 2005, p. 

70).  

4. Mixed Variables 

Some datasets are made of a combination of continuous and categorical variables, 

which can be difficult to cluster. Kaufmann and Rousseeuw (1990) suggest that a simple 

solution would be to preform clustering on each of these variables separately and 

compare the output clusters. This approach is not ideal because different variables could 

yield different clusters and it might be difficult to determine which clusters are the most 

accurate. Another method is to approach each variable as if it is on a nominal scale, but 

then it would have to be assumed that it is symmetric. Finally, as shown in Equation 1.6, 

each variable could be treated as binary and dissimilarity could be measured using a 

variation of Equation 1.4 (Kaufmann & Rousseeuw, 1990, p. 34).  

 
( , ) 0   if 

( , ) 1    if 

k ik k

k ik k

d i j x a

d i j x a

 

 
  (1.6) 

This method, along with other combinations, can lead to a loss of information. 

Determining ak could result in arbitrary clusters because two observations that were not 

very similar could then be forced into a group together (Kaufmann & Rousseeuw, 1990, 

p. 34). 

F. ADDRESSING CURRENT PROBLEMS 

Our clustering method addresses some of the issues with current distance metrics. 

Our method is not affected by linear transformations, so scaling variables or integrating 
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weights does not affect distance between two observations. We use trees to determine 

distances between observations, and as described by Faraway (2006) trees are unaffected 

by linear transformations. Since we scale the resulting deviances anyway, our method is 

totally unaffected by linear transformations. Trees, furthermore, are unaffected when the 

predictor variables are transformed in a non-linear but strictly monotonic way. However, 

a tree built using a non-linearly transformed response will be different than one built with 

the original response. In this way our method is immune to linear transformation of the 

input variables and, we might say, “resistant” to monotonic transformation. If a variable 

is transformed monotonically, trees in which that variable appears as a predictor will be 

unchanged; the one tree in which it appears as a response will change somewhat 

(Faraway, 2006, pp. 251–252). Some trees are discarded in our approach (see Chapter II); 

in this way our method performs automatic variable selection. This way, the analyst is 

freed from having to consider transformation or variable selection explicitly. Our method 

does not, however, adjust for correlated input variables. 

G. ORGANIZATION OF THE STUDY 

Chapter II is a literature review of the tools used in this new clustering method, 

such as classification and regression trees. Chapter III is an introduction to the new 

method, a description and examples of the three new distance metrics, and a description 

of the datasets that were used in the implementation of the new clustering method. 

Chapter IV goes over the results of our method and compares them to the other clustering 

algorithms. Chapter V discusses summary and future work to be done on this new 

clustering method. 
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II. LITERATURE REVIEW 

A. CLASSIFICATION AND REGRESSION TREES 

The new clustering method uses distances based on results from classification and 

regression trees (c&rt). According to Hastie, Tibshirani, and Friedman (2001), in a tree, 

all n observations start in the root node. One variable is then chosen for the first split, 

breaking up into two regions at some split point. Both the variable which is being split 

and the point at which it is split are chosen to give the tree a best fit. Splits continue to 

occur on different variables at different split points until the observations are divided into 

M regions R1, R2,…,RM and a pre-determined stopping point is reached, determined, for 

example, by a maximum number of nodes (Hastie, Tibshirani, Friedman, 2001,  

pp. 267–269). While there are other methods for building trees, this thesis only 

investigates c&rt.  

Ooi (2002) addresses the idea of using classification and regression to cluster 

observations. He proposes an algorithm that builds and prunes trees, as does our method, 

but he determines his clusters by finding modes and density estimates of the observations 

in the trees (Ooi, 2002, pp. 328–347).  

1. Regression Trees 

Regression trees are used for continuous responses. When a response, y, is split on 

a continuous variable, Xk, it is divided into two regions, R1: {Xk ≤ c} and R2: {Xk > c}, 

where c is some constant. For Xk, c is chosen so as to minimize the sum of squared errors 

of the response across the two regions (Equation 2.1). The average y for the left and right 

child nodes are denoted by Ly and Ry  respectively (Hastie et al., 2001, p. 269).  

 
2 2

: :

( ) ( )
ik ik

i L i R

i X c i X c

D y y y y
 

        (2.1) 

Every possible split on variable k is considered, and the process is repeated for all 

continuous predictors. The split produces two subsequent nodes, and splitting is 

considered on every node, using the same criterion, until the stopping point is reached. 
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For categorical predictors, a split produces two nodes which are determined by 

considering every possible binary split for all levels of that variable, ultimately choosing 

the one which produces the greatest change in deviance. The stopping point may not 

yield an optimal tree, however, either stopping with a tree that is too small or one that is 

too large and has over fit the data. In general, the tree is overgrown and must be pruned to 

reach optimality, and therefore a pruning method must be established (Hastie et al., 2001, 

p. 269). 

2. Classification Trees 

Hastie et al. (2001) approach classification trees differently than regression trees, 

although the former are built using a similar algorithm. A split on a node for response y 

should still in result reducing the deviance of the response across the two resulting 

regions. Instead of using the regression tree criterion of Equation 2.1, classification trees 

use deviance, also called cross-entropy. For a response with j classes, the deviance is 

defined by Equation 2.2. 

 
1

ˆ2 log( )
J

j j

j

D n p


     (2.2) 

This criterion looks at the proportion of class j for the response variable y in node 

Rm. The number of observations of class j is denoted by nj and the estimated proportion of 

class j is denoted by ˆ
jp , which can be calculated by ˆ j

j

n
p

n
  (Hastie et al., 2001, p. 271). 

For this summation, we take  0 log 0   0   . 

B. MEASURING QUALITY OF TREES 

Trees can often become larger than necessary, over-fitting the data. When this 

over-fitting occurs, the trees need to be pruned to an optimal size. Our method uses the 

K-fold cross-validation rule to determine an appropriate tree size. 
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1. K-fold Cross-Validation 

The K-fold cross-validation method is used to estimate the prediction error of a 

method by estimating the extra-sample error. The extra-sample error, Err, is the 

generalized error found when method ˆ ( )f is applied to a test set taken from the original 

data set (Hastie et al., 2001, p. 214). For a general loss function L( ), we have Equation 

2.3, where the expectation is taken over the joint distribution of the response and 

predictors (Y, X). 

 ˆE ( , ( ))Err L Y f X 
 

  (2.3) 

K-fold cross-validation gets its name by dividing the data into k equal sections. 

One of the k sections is set aside as a test set and the other k − 1 sections are used as a 

training set. The model is then fit to the remaining sections in the training set. Next, the 

test set is predicted and the prediction error of the training set is calculated (Hastie et al., 

2001, p214). The fitted model of the training set is denoted by ˆ ( )f . Finally, the cross-

validation estimate of prediction error is calculated for a continuous predictor using 

Equation 2.4 (Faraway, 2006, p. 213). 

 2

1

ˆ( ( ))
n

i i

i

CV y f x


    (2.4) 

For a categorical predictor, each item in the test set is assigned a class using the tree built 

using the training set; then Equation 2.2 is applied to compute the deviance. 

For our clustering method, we use 10-fold cross validation, leaving 10 percent of 

the data aside to be used a test set each time. The datasets that are used in the model 

implementation are large enough that the cross-validation should not be biased by the 

removal of the test set. We prune each tree to the size that minimizes the cross-validated 

prediction error. If a tree is pruned to the root—that is, if cross-validation indicates that 

no split is predictive of the response—then that tree is omitted. A variable whose tree is 

discarded, and which never appears as a predictor in any other tree, is omitted. In this 

way our algorithm performs variable selection automatically. 
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2. One-Standard Error Rule 

Although we do not find it necessary to use in our new method, another way to 

prune trees is the one-Standard Error (one-SE) rule. According to Hastie et al (2001), the 

cross-validation method produces standard errors of the misclassification error rates for 

the k sections. The one-SE rule is often applied to decide the best model from the cross-

validation. The criteria for selection is that it has to be the best model out of all k models 

which have errors within one SE of the model with the smallest error (Hastie et al., 2001, 

p. 215). 

C. CLUSTER EVALUATION 

There needs to be a way to establish whether our clustering method accurately 

groups observations into their true classes. For this reason, we use well-known datasets 

for which the true classes of each observation are known and evaluate how well our 

method is able to cluster the observations into their respective classes. One method of 

evaluating the prediction level, how accurate our method is at clustering the data, is a 

Pearson’s chi-squared test goodness of fit statistic, 2  (Faraway, 2006, p. 40). We use a 

normalization of Pearson’s chi-squared statistic, Cramér’s V (Equation 2.5), as a 

goodness-of-fit statistic for our method. The number of true classes is represented by K 

while C is the number of classes produced by the clustering algorithm, and n is the 

number of observations. 

 
2

min( 1, 1)
V

n K C




  
  (2.5) 
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III. METHODOLOGY 

A. INTRODUCTION 

The major concept of our clustering method is that dissimilarity between two 

observations can be determined by how often they fall into the same leaf of a 

classification or regression tree. Observations are similar if they often fall in the same 

leaf and are different if they usually fall in two different leaves. 

B. MODEL ASSUMPTIONS 

Our method builds classification and regression trees for each variable in the 

dataset. Ten-fold cross-validation is used to prune the tree to ensure that a tree with a 

reasonably small error is created. This tree is taken to be the optimal-sized tree for that 

variable. 

Once the distances between all pairs of observations are calculated, a dissimilarity 

matrix is constructed. A final clustering algorithm based on these distances is 

implemented. For our method, we use agglomerative nesting (AGNES) (Kaufman and 

Rousseeuw, 1990). 

C. METHOD IMPLEMENTATION 

Clustering algorithms do not use any specific variable as a response variable, so 

our method starts by creating p trees, one with each variable used as the response 

variable. The trees are pruned using 10-fold cross-validation. Every observation is 

assigned to one of the resulting leaves in each tree. The assignment of leaf l for tree t is 

used to determine the distance between two observations, based on one of the three new 

distance metrics. All three distance metrics operate under the notion that observations are 

similar to other observations on the same leaf and different to those observations on other 

leaves. 
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1. Distance Metric 1, d1  

The first of the new distance metrics, d1, is relatively straightforward (Equation 

3.1). For tree t, two observations have a distance of 1 if they fall on different leaves. If the 

observations fall on the same leaf, they have a distance of 0. The leaf on which 

observation i falls for tree t is denoted by Lt(i).  

 1

1

0           if ( ) ( )
( , )

1           if ( ) ( )

p
t t

t t t

L i L j
d i j

L i L j

 
  

 
   (3.1) 

After all the p trees are constructed, the distance between two observations is the 

number of trees in which the observations fall on different leaves. 

2. Distance Metric 2, d2 

The second distance metric, d2, applies the same idea as the first: observations on 

the same leaf are similar to each other and different from observations on other leaves. 

This simplified idea, however, treats all trees equally. Although all trees are pruned, some 

trees might actually be better than others. The measure of the quality of a tree is the 

overall decrease in deviance that it produces, based on the difference between the 

deviance at the root node, Dt, and the sum of the deviances of all the leaves of tree t. The 

difference in deviance is denoted by tD .  

A tree with a large tD  is assumed to be of better quality than a tree with a 

smaller tD . Therefore, if two observations are on different leaves of a good quality tree, 

they are perhaps more dissimilar than two trees that land on different leaves of a poor 

quality tree. Once all p trees are constructed, we determine which tree has the greatest

tD , max( )t
t

D , and establish that this is the strongest tree of the dataset. The changes 

in deviance for the remaining trees are scaled by max( )t
t

D . Equation 3.2 shows the 

formulation for d2. 
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2

1

0                                 if ( ) ( )

( , )
                 if ( ) ( )

max( )

t t
p

t
t tt

t
t

L i L j

Dd i j
L i L j

D

 
 

  
 
 

   (3.2) 

Figure 3 shows an example of one of p trees that might be used to calculate 

dissimilarities using d2. The deviance of each leaf is shown in the large ovals and the leaf 

number in small circles. For this example, assume that another tree yields a the greatest 

change in deviance for all p trees and max( )t
t

D = 12000. If observation i and 

observation j both land in the same leaf in this tree, they have a distance of 0, just as with 

d1. However, if they fall in different leaves, their distance from each other is (10000-

4700)/12000 = 0.44. The sum of the deviance of all of the leaves is 4700 and tD = 10000 

for this tree. Scaling all of the changes in deviance by max( )t
t

D allows the best tree to 

have the most weight in determining distance between observations. If two observations 

fall in different leaves in that tree, we assume that their difference is better represented in 

that strong tree than in a tree that is not as good. For this example, the distance between 

two observations that were in different leaves in the best tree would be 12000/12000 = 1 

for that tree. This is the maximum distance between two observations on any tree.  

 

Figure 3.  Tree with deviance in large circles and leaf number in small circles 

(from Buttrey, 2006) 
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3. Distance Metric 3, d3 

The third distance metric, d3, calculates distance based on deviance of leaves as in 

d2, but unlike the first two distance metrics, does not assume that all leaves are equally 

different from each other. Instead, d3 (Equation 3.3) looks at the change in deviances of 

the tree only up to the shared parent node of the two leaves whose distance is being 

evaluated, in addition to the change in deviances of the whole tree, tD , as before. The 

change in deviances of the partial tree up to the parent node is denoted by ( , )tD i j .  

 3

1

0                        if ( ) ( )

( , ) ( , )
           if ( ) ( )

t tp

t
t tt

t

L i L j

d i j D i j
L i L j

D


 
 

  
  

   (3.3) 

As with the first two distance metrics, observations i and j have a distance of 0 if 

they fall on the same leaf. With d3, observations which fall on leaves that are separated by 

multiple splits are deemed farther apart. Figure 4 shows an example of a tree where the 

distance between leaf 14 and leaf 15 is evaluated under d3. The total change in deviance 

for the entire tree is the maximum deviance of the tree, 10000, minus the sum of the 

deviances of the leaves, 4700, or  10000  4700  5300tD    . Next, the tree is cropped 

at the parent node of 14 and 15, leaf 7. Now, ( , )tD i j  is calculated by subtracting the 

original sum of deviances of all of the leaves, 4700, from the sum of deviances of the 

newly cropped tree, 4900, or  4900 4700  2( 00, )tD i j    . The total distance 

between leaf 14 and leaf 15 is 
( , ) 200

= =0.038
5300

t

t

D i j

D




. 
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Figure 4.  Tree with distance between leaf 14 and leaf 15 evaluated using d3. 

Observations which fall in leaf 14 and leaf 15 probably do share many similar 

qualities, as they are only separated by one split. Following this logic, observations in 

leaf 2 and leaf 14 are probably as dissimilar as possible since they are removed from each 

other by the maximum number of splits. These leaves in fact have the maximum distance 

of 1, 
( , ) 10000 4700

= =1
10000 4700

t

t

D i j

D

 

 
. The shared parent node for leaf 2 and leaf 14 is the 

root node, which has the maximum deviance for this tree.  

D. CLUSTERING ALGORITHMS 

1. Final Clustering Method AGNES 

Once all of the distances between observations are calculated using one of the 

new three distance metrics, we are left with a dissimilarity matrix of all of the pair-wise 

distances. A final clustering algorithm based on these distances produces the final 

clusters.  

Kaufman and Rousseeuw (1990) describe an agglomerative method of clustering, 

AGNES, in which there are originally n clusters, each with one observation. These 

clusters are then successively merged together until there is one cluster which contains all 



 18 

n observations. AGNES can be used for a set of interval-scaled variables or a 

dissimilarity matrix, as used in our method. AGNES specifically looks at distances 

between clusters, which is why each observation starts as its own cluster. AGNES works 

in a sequence of steps where the two closest clusters are joined and now treated as one 

cluster. Then the next two closest clusters are joined and so on until all n clusters form 

one cluster (Kaufman & Rousseeuw, 1990, pp. 202–205). 

Although AGNES combines n clusters into one cluster, it can be given a threshold 

by which to create k clusters. The datasets on which our new method is tested have the 

observations labeled into k clusters according to classification. Although these classes are 

pre-determined, there might be more clusters in nature than there are classes (Kaufman 

and Rousseeuw, 1990, p. 199), so our method is tested by clustering the data into k and 

2k clusters.  

2. Other Clustering Algorithms 

We also run four well-known clustering algorithms on the datasets, both using k 

and 2k clusters. Partitioning around medoids (PAM), divisive analysis (DIANA), and 

AGNES were applied to all three datasets. K-means can only be used on numerical data 

and therefore was not applied to the Splice dataset. See Kaufmann and Rousseeuw (1990) 

for more information on PAM and DIANA, and Hartigan (1975) for more information on 

K-means. 

E. DATASETS 

This thesis tests the new clustering method on three well-known datasets, Table 1, 

from the University of California at Irvine Machine Learning Repository (Bache & 

Lichman, 2014). The true classification of the observations is known for each of these 

datasets, so this allows us to test our method’s predictive power. For each dataset, 15 and 

50 variables of random noise were added to test the new method’s resilience to noise. 

Each dataset and the generation of the noise variables are explained in detail in the 

following sections. 
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Name Observations Variables Data Type Classes 

Iris 150 4 Numeric 3 

Iris with noise 150 19 Numeric 3 

Optical 1797 64 Numeric 10 

Optical with noise 1797 79 Numeric 10 

Splice 3190 60 Categorical 3 

Splice with noise 3190 75 Categorical 3 

Table 1.   Dimensions of datasets used for validation. 

1. Iris 

The Iris dataset originally comes from Sir Ronald Fisher’s Iris Plants Database. It 

has 150 observations of different irises, with measurements of sepal length, sepal width, 

petal length, and petal length, all measured in centimeters. The observations are classified 

into three classes of species, with 50 observations per species. This dataset has been used 

in numerous publications and is one of the most well-known datasets for classification 

and pattern recognition (Bache & Lichman, 2014). 

The variables of random noise were generated in R using a random generation 

from the normal distribution. Each noise variable has a length of 150 to correspond with 

the observations of the dataset. The mean of the distribution is 0 and the standard 

deviation is 1.  

2. Optical 

The Optical dataset is a test set from Ethem Alpaydin and Cenk Kaynak’s dataset 

titled “Optical Recognition of Handwritten Digits.” The original dataset has 5620 

observations; we use approximately one-third of these observations for testing purposes. 

The test set gives a good representation of the different clusters without being too 

computationally taxing. This dataset uses handwritten digits zero through nine from 13 

different people. The digits are converted to a digitized form and then preprocessing 

programs are used to try to optically recognize the digits (Bache & Lichman, 2014). 

Although the hand-written digits are zero through nine, the inputs for recognition, 

after being converted to a digitized form, were integers zero through 16 (Bache & 
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Lichman, 2014). The noise variables were generated in R by drawing a random sample, 

with replacement, of integers zero through 16. Each noise variable has a length of 1797. 

3. Splice 

The final dataset, Splice, comes from the Genbank 64.1 database “Primate Splice-

Junction Gene Sequences (DNA) with Associated Imperfect Domain Theory.” The 

dataset is made of 3190 observations of DNA sequences, each with 60 DNA sequence 

elements. The observations are divided into three classes of splice sites, intron-extron, 

extron-intron, or neither. These classes represent the point in the DNA sequence in which 

unnecessary DNA sequence elements are removed (Bache & Lichman, 2014). 

The noise variables added to Splice were generated in R by drawing a random 

sample with replacement of the letters C, A, G, and T to correspond to the DNA sequence 

elements. Each noise variable has a length 3190 to fit with the rest of the dataset.  
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IV. ANALYSIS 

A. INTRODUCTION 

This chapter presents the results of our new clustering method for all three 

distance metrics, using Cramér’s V to measure how well our method accurately groups 

each observation into their true classes. We compared these results to the Cramér’s V 

values from running AGNES, PAM, DIANA, and K-means on the datasets.  

B. RESULTS 

The clustering algorithms were run on a mid-grade laptop with a dual core 

processor, a 64-bit operating system, and four gigabytes of RAM. Each run used 64-bit R, 

Version 2.15.1 (R Core Team, 2012). For each dataset, the existing algorithms—AGNES, 

DIANA, PAM, and K-means—took five minutes or less to run. That was also the case 

with our new measures d1 and d2. In the Iris data set, the d3 measure took approximately 

the same time as the other algorithms (that is, almost no time). However, d3 tended to be 

quite a bit slower than the existing algorithms and slower than d1 and d2. The d3 

algorithm took less than 10 minutes on the Optical and Splice datasets with no noise (so 

approximately double the time required for the existing algorithms), about 20 minutes for 

the datasets with 15 noise variables, and approximately 40 minutes when 50 noise 

variables were added to the Optical dataset. The d3 algorithm could not be run on the 

laptop with the Splice data plus 50 noise variables, due to insufficient memory. Instead, a 

high-powered workstation (192 gigabytes of RAM) was necessary, and on that platform, 

approximately 15 minutes was required. Of course, since our algorithms operate 

independently on columns, they are well-suited to parallel processing. 

Table 2 shows the Cramér’s V of all of the clustering algorithms on the Iris, 

Optical, and Splice datasets, with different amounts of noise and both with k and 2k 

clusters. K-means cannot cluster numerical data, so no results are shown for this 

algorithm with the Splice data. The highest values in each row are highlighted. 
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Table 2.   Cramér’s V for the different clustering algorithms for k and 2k clusters 

with highest values high-lighted. 

Out of the 18 scenarios, at least one of the new distance metrics performed better 

than the other clustering algorithms in 77 percent of the cases. With the exception of Iris 

with no noise and three clusters, each new distance metric did better than all four other 

clustering algorithms for the Iris dataset. In general, the other algorithms performed far 

worse with the introduction of the 50 noise variables. In those cases, d2 performed better 

than the other methods. 

For the Optical dataset, K-means performed better than all other algorithms when 

using 20 clusters. With 10 clusters, each new distance metric did the best, depending on 

the amount of noise added to the dataset. When no noise was added, d1 performed the 

best, d3 performed the best when 15 noise variables were added to the data, and once 

again when 50 noise variables were added, d2 performed better than the other distance 

metrics.  

For every case in the Splice data, our second distance metric, d2, did better than 

the other algorithms and the other two new distance metrics. The other two distance 

Dataset Clusters Agnes Diana Pam Kmeans d1 d2 d3

Iris 3 0.781 0.709 0.745 0.745 0.781 0.769 0.649

Iris 6 0.785 0.798 0.858 0.785 0.878 0.877 0.876

Iris 15 noise variables 3 0.464 0.5 0.444 0.541 0.649 0.877 0.649

Iris 15 noise variables 6 0.483 0.535 0.471 0.459 0.92 0.896 0.877

Iris 50 noise variables 3 0.02 0.5 0.22 0.486 0.521 0.685 0.649

Iris 50 noise variables 6 0.045 0.482 0.3 0.505 0.876 0.896 0.65

Optical 10 0.505 0.472 0.659 0.607 0.673 0.52 0.477

Optical 20 0.728 0.707 0.769 0.831 0.748 0.727 0.711

Optical 15 noise variables 10 0.426 0.454 0.575 0.568 0.574 0.565 0.587

Optical 15 noise variables 20 0.724 0.664 0.742 0.796 0.7 0.718 0.719

Optical 50 noise variables 10 0.495 0.529 0.498 0.552 0.56 0.582 0.479794

Optical 50 noise variables 20 0.709 0.673 0.592 0.81 0.75 0.713 0.692617

Splice 3 0.0004 0.0751 0.0582 0.0017 0.3571 0.0016

Splice 6 0.0016 0.1077 0.0579 0.3834 0.6786 0.3387

Splice 15 noise variables 3 0.001 0.0292 0.0486 0.0017 0.3571 0.0016

Splice 15 noise variables 6 0.0023 0.1326 0.062 0.3834 0.6786 0.3387

Splice 50 noise variables 3 0.001 0.0916 0.0422 0.0017 0.3571 0.0394

Splice 50 noise variables 6 0.004 0.1326 0.0513 0.3834 0.6786 0.5811
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metrics, d1 and d3, did better than the other four algorithms when using six clusters. The 

difference in performance was minimal when the data was grouped into three clusters. 

C. CONCLUSION 

Our new clustering method performed better than current clustering algorithms in 

a majority of cases. For the Iris and Splice datasets, the distance metrics performed much 

better than the other algorithms in the presence of noise. When noise was added to the 

Optical dataset, d2 and d3 performed better than the other methods when clustering with 

10 clusters. K-means, however, performed better in the presence of noise with 20 

clusters. We had expected that our method would do better with large amounts of noise 

due to the variable selection that automatically occurs. 
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V. SUMMARY AND FUTURE WORK 

A. SUMMARY 

The purpose of this thesis was to provide a new clustering method that was not 

influenced by linear transformations and was able to perform automatic variable 

selection. Chapter I introduced clustering and some commonly used distance metrics and 

described some problems with current clustering methods. Chapter II focused on tools 

that we used in our new method. Chapter III described our method, gave examples of 

each of the new distance metrics, and described the datasets which were used to test our 

clustering method. 

Our new method performs very well at accurately clustering datasets into their 

true classes, especially in the presence of noise. In 18 different scenarios, our method 

performed better than four other clustering algorithms over 77 percent of the time. The 

use of classification and regression trees eliminates the need to scale the variables and 

allows for easy clustering of data with mixed variables. The only scaling that occurs does 

so automatically when using d2 or d3 when each distance measurement is scaled by the 

change in deviance of the best tree. Variables are automatically selected based on the 

quality of their respective trees. Automatic variable selection is one reason that our 

method out-performs other clustering algorithms when noise variables are present.  

B. FUTURE WORK 

Each distance metric is more sophisticated than the last and we anticipated that 

this increase in complexity would yield more accurate distances between observations. 

We predicted that d2 would perform better than d1 but expected that d3 would do the best 

out of the three distance metrics. This was only the case when the Optical dataset with 15 

noise variables was clustered into 10 clusters. The difference between d3 and the other 

two distance metrics is that it takes into account that observations which fall in leaves 

separated by a small number of splits are more similar than observations which fall in 

leaves separated by a large number of splits. Future work remains to be done on this idea 

to see if it actually should yield more accurate results than d1 and d2. 
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Breiman (1996) introduced bootstrap aggregation (bagging), a method which 

produces multiple outcomes of a predictor and averages over the outcomes for numerical 

values and uses a plurality vote for categorical data. Breiman used bagging on 

classification and regression trees as a means to reduce misclassification error (Breiman, 

1996, pp. 123–125). More work is to be done on our new method to apply bagging into 

the algorithm. Instead of producing one tree per variable, we believe that producing 

multiple trees per variable and averaging the distances of those trees might produce a 

more accurate representation of distances between observations. Parallelization would 

work very well when using bagging. Using p computers for p variables would cut down 

on computational time. In fact, parallelization should bring substantial speed benefits, 

even in our existing algorithm. 

Finally, our new method uses AGNES for a final round of clustering. AGNES 

might not be the best choice as a final clustering algorithm, especially for large datasets. 

Work is still to be done on determining the most optimal final clustering algorithm.  
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